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Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors:
Vortex semiloops in a spatially nonuniform magnetic field
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We apply time-dependent Ginzburg-Landau (TDGL) numerical simulations to study the finite frequency
electrodynamics of superconductors subjected to an intense rf magnetic field. Much recent TDGL work has
focused on spatially uniform external magnetic fields and largely ignores the Meissner state screening response
of the superconductor. In this paper, we solve the TGDL equations for a spatially nonuniform magnetic field
created by a point magnetic dipole in the vicinity of a semi-infinite superconductor. A two-domain simulation
is performed to accurately capture the effect of the inhomogeneous applied fields and the resulting screening
currents. The creation and dynamics of vortex semiloops penetrating deep into the superconductor domain
are observed and studied, and the resulting third-harmonic nonlinear response of the sample is calculated. The
effect of pointlike defects on vortex semi-loop behavior is also studied. This simulation method will assist our
understanding of the limits of superconducting response to intense rf magnetic fields.
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I. INTRODUCTION

Superconductor technology is widely used in industrial
applications where high current and low loss are required.
With technological advancements in the fabrication of high
quality superconducting materials and significant reduction
in cryocooler prices, superconductor-enabled devices like
magnetic resonance imaging, high performance microwave
and rf filters, low-noise and quantum-limited amplifiers, and
fast digital circuits based on rapid single flux quantum logic
devices became feasible [1,2].

The superconducting radio frequency (SRF) cavity [3,4]
used in new generation high energy particle accelerators
is an example of the large scale usage of superconductor
technology. Nb is the most dominant material used in SRF
applications because it has the highest superconducting crit-
ical temperature (Tc = 9.3 K) and superheating field (BSH ≈
240 mT) among the elemental superconductors at ambient
pressure while being a good heat conductor at typical SRF
operating temperatures [5]. During normal operation an SRF
cavity is subjected to a high rf magnetic field parallel to the
internal superconducting surface. One of the key objectives in
SRF cavity operation is to maximize the accelerating gradient
of the machine while minimizing the dissipated power in
the cavities. However, these cavities remain susceptible to a
number of issues including enhanced losses due to trapped
magnetic flux [6] and the existence of pointlike surface defects
[7,8]. The maximum gradient operating conditions are often
limited by extrinsic problems. One limiting scenario is that a
surface defect can facilitate the entrance of vortex semiloops
which can later be trapped due to the impurities within the
bulk of the cavity [9]. The energy dissipated due to the dynam-
ics of these vortex semiloops under the influence of rf currents
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could be the limiting factor on the ultimate performance of the
SRF cavity. This phenomenon cannot be simulated unless the
effects of the screening currents and fields on the supercon-
ducting order parameter are included self-consistently.

This paper is motivated by results for third-harmonic gen-
eration from a near-field microwave microscope utilized on
Nb surfaces [10–16]. In this experiment, a magnetic writer
probe from a conventional magnetic recording hard-disk drive
is used to create a high-intensity, localized, and inhomoge-
neous rf magnetic field on the surface of a Nb superconducting
sample. This probe applies a localized field oscillating at
microwave frequency, and measures the sample’s fundamen-
tal [17] and harmonic rf response. In the experiment, the
third-harmonic response and its dependence on the applied rf
magnetic field amplitude and the temperature of the sample
were studied. Preliminary results of TDGL modeling and
comparison to experimental data were published in Ref. [16].

In this paper, numerical solutions of the time-dependent
Ginzburg-Landau (TDGL) equations are obtained for a su-
perconductor subjected to a spatially nonuniform applied rf
magnetic field, and the effect of boundary conditions on the
accuracy of the results is investigated. First, the Ginzburg-
Landau (GL) theory and its range of validity are discussed
in Sec. II. Second, the TDGL equations and the normalization
used in this paper are presented in detail in Sec. III. Then,
the implementation of the TDGL simulation in COMSOL MUL-
TIPHYSICS simulation software with all appropriate boundary
conditions is summarized in Sec. IV. In Sec. IV A a two-
domain simulation capable of correctly modeling spatially
nonuniform magnetic fields and the response screening cur-
rents of the superconductor is described, and simple examples
are presented to demonstrate the validity of the two-domain
model. Next, in Sec. V, an application of the two-domain
simulation is presented, where vortex semiloops created by a
strongly inhomogeneous field distribution are simulated. The
time evolution of the vortex semiloops, their dependence on
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the magnitude of the rf magnetic field, and their interaction
with a localized defect are studied. Finally, in Sec. V D, a
more general case where the vortex semiloops are created in
a superconductor surface when a uniform rf magnetic field
is applied parallel to the surface of the superconductor is
presented, and the results are discussed. We then discuss
future work in Sec. VI and conclude the paper.

II. GINZBURG-LANDAU THEORY

The GL theory is a generic macroscopic model appropriate
for understanding the electrodynamic response of supercon-
ductors subjected to static magnetic fields and currents in
the limit of weak superconductivity [18]. GL generalizes
the theory of superconductivity beyond BCS by explicitly
considering inhomogeneous materials, including surfaces, in-
terfaces, defects, vortices, etc.

The GL equations are differential equations which relate
the spatial variation of the order parameter �(�r) to the mag-
netic vector potential �A(�r) and the current �J (�r) in a super-
conductor. GL starts with an expression for the free energy
density of a superconductor in terms of the position-dependent
order parameter and vector potential [19]:

FGL(�r) = α(�r, T )�2 + β(�r, T )

2
�4 + h̄2

2m∗

∣∣∣∣( �∇ − ie∗
h̄

�A
)

�

∣∣∣∣2

+ 1

2μ0
| �∇ × �A − �Ba|2. (1)

Here, α(�r, T ) and β(�r, T ) are the temperature and position-
dependent phenomenological expansion parameters, m∗ =
2me is the mass of the Cooper pair, e∗ = 2e is the charge of the
Cooper pair, �Ba = �Ba(�r, t ) is the amplitude of the externally
applied magnetic field, and i = √−1.

Taking variational derivatives and minimizing the free
energy with respect to � and �A leads to the coupled Ginzburg-
Landau equations [20,21]:
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� = 0,

(2)

1
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�∇×( �∇× �A − �Ba) = e∗h̄

2m∗i
(�∗ �∇� − � �∇�∗) − e2

∗
m∗

|�|2 �A.

(3)

Apart from the TDGL model, the Bogoliubov–de Gennes
equations [22–25], Gorkov’s Green’s-function method
[26–28], the Matsubara formalism [29,30], or Usadel’s
equations [31] can be used to study inhomogeneous
superconductors [32]. We shall utilize TDGL because of
its relative simplicity and the physical insights it offers
compared to these other more microscopic approaches.

III. TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
AND NORMALIZATION

The GL equations are static, and thus cannot be used
to study the temporal evolution of the order parameter and
the screening currents. In 1966, Schmid proposed a time-
dependent generalization of the GL equations that could be

utilized to study the dynamics of the order parameter [33].
Gor’kov and Eliashberg derived a similar equation [34], but
noted that for the case of a gapped superconductor there exists
a singularity in the density of states vs energy spectrum which
prohibits expanding various quantities in powers of the gap �.

Gor’kov limited the use of TDGL to gapless superconduc-
tors, or to materials with magnetic impurities or other pair-
breaking mechanisms that would round off the singularity
in the BCS density of states [21]. Proximity to a boundary
with a normal metal, along with strong external magnetic
fields and currents, can also lead to gapless superconductivity
before completely destroying it. Of relevance to the case of
SRF cavities, numerous researchers have noted a substantial
reduction in the singularity, and broadening of the density of
states spectrum, under SRF operating conditions [35,36] or
with various types of impurities and imperfections at the sur-
face [37–41]. Such conditions would also justify the use and
relevance of the TDGL equations under these circumstances.

In order to extend the validity of the TDGL formalism
to gapped superconductors, a generalized version of TDGL
(gTDGL) was proposed [42,43]. In gTDGL, the effects of a
finite inelastic electron scattering time are considered. gTDGL
is valid for a superconductor in the dirty limit, but does not
require strong limitations such as a large concentration of
magnetic impurities and/or gapless superconductivity [27].
Nevertheless, both TDGL and gTDGL are not microscopic
theories, thus some of the parameters of the model are difficult
to determine precisely for a given material of interest. For this
reason we focus on semiquantitative results and use the phe-
nomenological TDGL equations mainly to give insight into
the signals created by our near-field microwave microscope
[16]. Future work will explore the order parameter dynamics
under gTDGL. In addition, questions of validity and relevance
of the solution to the TDGL equations outside of the range in
which they are derived remain.

TDGL numerical simulations have been employed on a
broad variety of problems [20,44,45]. We note that TDGL
was previously used to study vortex dynamics and V-I charac-
teristics of two-dimensional (2D) rectangular thin films [46],
vortex entry in the presence of twin boundaries [47], and the
vortex dynamics under an ac magnetic field in mesoscopic
superconductors [48]. TDGL was also used to study the
dynamics of vortex loops created by a static magnetic dipole
[49] which is similar to the results discussed in this paper.
More recently, the TDGL formalism was used to estimate the
strength of the Kerr effect in a superconductor when a short
light pulse is applied [50].

Often a three-dimensional (3D) problem is simplified by
assuming that the sample is infinite in the direction parallel
to the externally applied magnetic field, thus reducing the 3D
problem to a 2D one [47,51,52]. Moreover, much published
work done using numerical solutions to the TDGL equations
involves problems with a spatially uniform external magnetic
field and uses a single (entirely superconducting) domain for
the simulation. However, this assumption ignores the effect
that the screening currents would have at the surface, which
is one of the most important aspects of the problem that we
investigate.

Here we give a brief motivation for the origins of the TDGL
equations. Once the GL free energy is known in its functional
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form [Eq. (1)], the relaxation dynamical equation can be
written by considering how the order parameter evolves after
being slightly disturbed from its equilibrium value [27,53]:

−γ

(
∂

∂t
+ i

h̄
e∗�

)
�(�r, t ) = δFGL( �r, t )

δ�∗ , (4)

where γ plays the role of a friction coefficient. Here, the
scalar electric potential � is included to make the equation
describing the dynamics of the superconducting order param-
eter gauge invariant. The TDGL equations are then derived
through the variational derivatives of the GL free energy
equation [Eq. (1)] with respect to �∗ and A and are given as
follows [33,52,54]:

h̄2

2m∗D

(
∂
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+ i

h̄
e∗�

)
� = − 1
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(
h̄

i
�∇ − e∗ �A

)2

�

+ α(�r, T )� − β(�r, T )|�|2�,

(5)

σ

(
∂ �A
∂t

+ �∇�

)
= e∗h̄

2m∗i
(�∗ �∇� − � �∇�∗) − e2

∗
m∗

|�|2 �A

− 1

μ0

�∇ × ( �∇ × �A − �Ba), (6)

where � = �(�r, T, t ) is the time-dependent order parameter,
�A = �A(�r, t ) is the magnetic vector potential, �Ba = �Ba(�r, t ) is
the externally applied magnetic field, � = �(�r, t ) is the scalar
electric potential, D is the phenomenological electron diffu-
sion coefficient given by D = vF l

3 [20] with vF being the Fermi
velocity and l being the quasiparticle mean free path [55],
and σ is the electric conductivity of the normal (nonsuper-
conducting) state. It is evident from Eq. (5) that γ = h̄2

2m∗D
and can also be written as γ = |α(T )|τ� (T ), where τ� (T ) =
ξ (T )2

D = π h̄
8kB (Tc−T ) is a characteristic time for the relaxation of

the GL order parameter [54]. Here, α(T ) = α(0)(1 − T
Tc

) and

ξ 2 = ξ 2
0

(1− T
Tc

)
, where ξ0 is the zero temperature GL coherence

length.
Equation (5) was first proposed by Schmid [33], following

the derivation of the GL equation from BCS [56,57] by
Gor’kov and Eliashberg [34]. Equation (6) is Ampere’s law
�∇ × �B(�r) = μ0( �Js(�r) + �Jn(�r)), where �Jn(�r) = −σ ∂ �A(�r)

∂t is the
normal current and the supercurrent is defined in Eq. (7).

The superconducting current can be obtained from the
expectation value of the momentum operator for a charged
particle in a magnetic field:

�Js(�r, t ) = e∗h̄

2m∗i
(�∗ �∇� − � �∇�∗) − e2

∗
m∗

|�|2 �A. (7)

The TDGL equations are invariant under the following change
of gauge [52]:

�(�r, t ) → �(�r, t )eiχ (�r,t ), (8)

�A(�r, t ) → �A(�r, t ) + h̄

e∗
�∇χ (�r, t ), (9)

�(�r, t ) → �(�r, t ) − h̄

e∗

∂χ (�r, t )

∂t
, (10)

where χ (�r, t ) is any (sufficiently smooth) real-valued scalar
function of position and time. One can fix the gauge as
∂χ (�r,t )

∂t = e∗
h̄ �(�r, t ) in order to effectively eliminate the electric

potential at all times [50,52].
It is useful to introduce dimensionless variables (denoted

by the tilde) to simplify the simulation and normalize Eqs. (5)
and (6): The order parameter is scaled according to �∞, � →
�∞�̃ where |�∞(�r)|2 = −α0

β0
is the bulk superfluid density at

zero temperature in the absence of an external magnetic field,
α0 ≡ α(T = 0), and β0 ≡ β(T = 0). The spatial coordinates
are scaled according to the zero temperature GL penetration

depth λ0 ≡
√

m
μ0nse∗2 , so that (x, y, z) → (λ0x̃, λ0ỹ, λ0̃z), thus

�∇ → 1
λ0

�̃∇ [58]. Time is scaled according to the characteristic
time for the relaxation of the vector potential τ0, t → τ0̃t
where τ0 ≡ μ0λ

2
0σn [59] and σn is the normal state conduc-

tivity at 0 K [as opposed to the conductivity of nonsuper-
conducting current at any temperature denoted as σ (T )]. The
temperature is scaled according to the critical temperature of
the superconductor Tc, T → TcT̃ . The vector potential �A →
�0
ξ0

�̃A where �0 = h
2e is the magnetic flux quantum. The su-

perconductor current is scaled in terms of Jc, �J → Jc
κ
�̃J , where

Jc = �0

2πμ0λ0ξ
2
0

= Bc2
μ0λ0

is the critical current density at T = 0
and B = 0, and κ is the GL parameter and is defined as the
ratio of two characteristic length scales κ ≡ λ0

ξ0
. The normal

state conductivity is scaled with its zero temperature value
σ → σnσ̃ and, since it is nearly constant in the temperature
range of interest for Nb, it is set to σ̃ = 1. The “normalized
friction coefficient” is defined as the ratio between the two
characteristic time scales τ� and τ0, η ≡ τ�

τ0
[54,60] and is

proportional to γ defined in Eq. (4) (η = γ

|α|τ0
). For cases

when the source of an externally applied magnetic field is
outside of the superconducting domain, the �Ba term in Eq. (6)
should be dropped because �∇ × �Ba = 0 everywhere within
the superconducting domain.

Rewriting Eqs. (5) and (6) using the newly introduced
dimensionless quantities and dropping the tilde, we have

η
∂�

∂t
= −

(
i

κ
�∇ + �A

)2

� + [ε(�r, T ) − |�|2]�, (11)

σ
∂ �A
∂t

= 1

2κi
(�∗ �∇� − � �∇�∗) − |�|2 �A − �∇ × �∇ × �A,

(12)

�Js(�r, t ) = 1

2κi
(�∗ �∇� − � �∇�∗) − |�|2 �A. (13)

Defects (such as pinning sites) can be introduced into the
model via spatial variation of the GL coefficient α(�r, T ). Such
defects could be due to spatial variation of temperature T ,
critical temperature Tc(�r), and/or spatial variation of the mean
free path l (�r). One can calculate the vortex pinning potential
created by these kinds of disorder using the method out-
lined in Ref. [44]. The pinning coefficient ε(�r, T ) = α(�r,T )

α(T =0) =
ξ 2(T =0)
ξ 2(�r,T ) = 1 − T

Tc (�r) dictates the maximum possible value for
the superfluid density ns(�r, T ) at a given location and temper-
ature in the absence of an external magnetic field.
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In this paper we are interested in studying the effects of
some common SRF surface defects, such as lossy Nb oxides
and metallic Nb hydrides near the surface of Nb [61]. These
types of defects either are nonsuperconducting or have lower
critical temperature than Nb. Such metallic inclusions, or
the effect of nonzero temperature, can be specified through
ε(�r, T ) [48,62–65], which can range from ε(�r, T ) = 0 (strong
order parameter suppression) to ε(�r, T ) = 1 (full supercon-
ductivity).

To numerically simulate the superconducting domain, we
must specify the boundary conditions for the order parameter,
current density, and vector potential. In this paper only the
superconductor-insulator boundary is considered. Any current
passing through the boundary between a superconducting
domain and vacuum or insulator would be nonphysical, and
thus on the boundary ∂� of the superconducting domain �

we expect

�J · n̂ = 0 on ∂�. (14)

Here n̂ is the unit vector normal to the boundary, and since we
expect Eq. (13) to be true even when �A = 0 and � 
= 0 the
first boundary condition is [25,52,54,60]

�∇� · n̂ = 0 on ∂�. (15)

Likewise when both �A 
= 0 and � 
= 0, to satisfy Eq. (14),

|�|2 �A · n̂ = 0 on ∂�, (16)

leading to

�A · n̂ = 0 on ∂�. (17)

The third condition generally used is the continuity of the
magnetic field across an interface:

�∇ × �A = �Bexternal on ∂�, (18)

where �Bexternal is the externally applied magnetic field.

IV. TDGL IN COMSOL

COMSOL MULTIPHYSICS simulation software [66] can be
used to solve the TDGL equations in both 2D and 3D
domains [52,67]. The main advantage of COMSOL is the
intuitive interface of the software and automatic algorithm
optimization. A critical comparison of COMSOL and ANSYS

simulation software was previously performed [68], where
the authors showed that COMSOL can complete the simulation
ten times faster while reaching similar results. The accuracy
of the software has been validated by other researchers as
well [69,70]. COMSOL has an easy learning curve enabling
researchers to use the TDGL model as a tool without spending
too much effort on algorithm development [71].

The general form partial differential equation is one of the
equations best suited to be solved by COMSOL MULTIPHYSICS

simulation software and is given as

d
∂ �u
∂t

+ �∇ · �� = �F . (19)

Here �F is the driving term vector, d is the inertia tensor, �u is
a column vector of all unknowns, and �� is a column vector
function of �u. We can rewrite Eqs. (11) and (12) to be in this
form. Redefine � and �A as

� = v1 + iv2, (20)

where v1 and v2 are real functions of position and time:

�A = A1x̂ + A2ŷ + A3ẑ, (21)

where A1, A2, and A3 are real functions of position and time
representing the magnitudes of the components of �A in the x̂,
ŷ, and ẑ directions.

We thus have five independent unknown variables and
five equations [two from Eq. (11), real and imaginary, and
three vector components from Eq. (12)]. After some simple
mathematical rearrangement we get an equation of the form
of Eq. (19):

⎡⎢⎢⎢⎣
η 0 0 0 0
0 η 0 0 0
0 0 σ 0 0
0 0 0 σ 0
0 0 0 0 σ

⎤⎥⎥⎥⎦ · ∂

∂t

⎡⎢⎢⎢⎢⎢⎢⎣

v1

v2

A1

A2

A3

⎤⎥⎥⎥⎥⎥⎥⎦ +
[

∂

∂x

∂

∂y

∂

∂x

]
·

⎡⎢⎢⎢⎢⎢⎢⎣

− v1x
κ2 − v1y

κ2 − v1z

κ2

− v2x
κ2 − v2y

κ2 − v2z

κ2

0 A2x − A1y A3x − A1z

A1y − A2x 0 A3y − A2y

A1z − A3x A2z − A3y 0

⎤⎥⎥⎥⎥⎥⎥⎦ = �F , (22)

�F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A1x+A2y+A3z )
κ

v2 + 2(A1v2x+A2v2y+A3v2z )
κ

− (
A2

1 + A2
2 + A2

3

)
v1 + [

ε − (
v2

1 + v2
2

)]
v1

− (A1x+A2y+A3z )
κ

v1 − 2(A1v1x+A2v1y+A3v1z )
κ

− (
A2

1 + A2
2 + A2

3

)
v2 + [

ε − (
v2

1 + v2
2

)]
v2

(v1v2x−v2v1x )
κ

− (
v2

1 + v2
2

)
A1

(v1v2y−v2v1y )
κ

− (
v2

1 + v2
2

)
A2

(v1v2z−v2v1z )
κ

− (
v2

1 + v2
2

)
A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

Here v1x stands for ∂v1
∂x , A2z stands for ∂A2

∂z , and so on. These equations indicate that the change in �A(�r, t ) is driven by the total

current, while the change in �(�r, t ) is driven by both �(�r, t ) and its interaction with �A(�r, t ).
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FIG. 1. Schematic view of the superconductor and vacuum
domains and boundary conditions in our TDGL simulations.

The boundary conditions at the superconductor-vacuum
interface are as follows:

�∇� · n̂ = 0 on ∂�, (24)

�A · n̂ = 0 on ∂�, (25)

and

�∇ × �A = �∇ × �Aext on ∂�. (26)

A. Two-domain TDGL and inclusion
of superconducting screening

After reviewing some previously published TDGL simula-
tions [47,52,64], we noticed that usually Eq. (18) or Eq. (26)
is enforced on the boundary of the superconductor. However,
this implies that the superconducting screening current has
no effect on the magnetic field at the boundary and beyond
the superconducting domain. This is physically incorrect for
the situation of interest to us. The effect of screening currents
is crucial when one is trying to simulate a spatially nonuni-
form external magnetic field (like that arising from a nearby
magnetic dipole) and the resulting nonlinear response of the
superconductor.

To include the important physics of screening, our simula-
tion is divided into two domains: superconductor and vacuum
(Fig. 1). The full coupled TDGL equations are solved in
the superconductor domain, while only Maxwell’s equations
are solved in the vacuum domain, with appropriate bound-
ary conditions at the interface. Any finite value of �A · �n or
�∇� · �n would lead to a finite current passing through the
superconductor-vacuum boundary (red box in Fig. 1), which
is nonphysical, hence Eqs. (24) and (25) are enforced at
the superconductor-vacuum interface. Any externally applied
magnetic field is introduced by placing a boundary condition
on the outer boundary of vacuum domain [Eq. (26)]. The vac-
uum domain is assumed to be large enough that at the external
boundary (blue box in Fig. 1) the magnetic field generated
by the superconductor is negligible. Figure 1 schematically
summarizes this scenario.

We now examine several key examples where it is crucial
to include the screening response of the superconductor to
capture the interesting physics. Through these two examples
we validate our approach to solving the TDGL equations.

FIG. 2. Plot of the TDGL two-domain solution for the z com-
ponent of the magnetic field in a plane through the center of the
sphere in and around a superconducting sphere in the Meissner state
subjected to a uniform static external magnetic field in the z direction.
The dashed lines show the boundaries of the spheres, with the smaller
sphere being the superconducting sphere with diameter 10λ0 and the
larger sphere being the vacuum domain with diameter 40λ0. The
solution is obtained for temperature T = 0, GL parameter κ = 1, and
external magnetic field �Bapplied = 10 × 10−3Bc2 ẑ. Black lines show
the streamline plot of the magnetic field, while the color represents
the value of magnetic field component Bz. The white line indicates
the equator, and the magnetic field along the white line is shown in
Fig. 3.

B. Superconducting sphere in a uniform magnetic field

First consider the classic problem of a superconducting
sphere immersed in a uniform magnetic field. Assume that
the superconductor remains in the Meissner state. It is known
from the exact solution to this problem that there will be an
enhancement of the magnetic field at the equatorial surface of
the superconducting sphere due to the magnetic flux that is
expelled from the interior of the sphere. To test this approach
to solving the TDGL equations we created a model of this
situation in COMSOL [72]. We simulated the response using
the two-domain method, and the conventional single-domain
method used in many other contexts, and then compared both
results with the exact analytical solution for the magnetic field
profile [73].

Figure 2 shows the TDGL simulation of a superconducting
sphere subjected to a uniform static external magnetic field.
The boundaries of the spheres are shown with the dashed
lines, where the smaller sphere is the superconducting sphere,
and the larger sphere is the vacuum domain. The colors repre-
sent the amplitude of the ẑ component of the applied magnetic
field in the y-z plane passing through the common center of the
spheres. Black lines show the streamline plot of the magnetic
field in the same y-z plane. The streamline plot is defined
as a collection of lines that are tangent everywhere to the
instantaneous vector field, in this case to the direction of the
magnetic field. The simulation was initialized in a field free
configuration and the external magnetic field was applied at
t = 0. The simulation was iterated for t = 1000τ0 time steps
after which the changes in |�|2 were <0.1% per iteration.
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FIG. 3. Top: Magnetic field ẑ-component (Bz) profile through the
center of the sphere (white line in Fig. 2). The results of a single-
domain TDGL model are shown in red, those of a two-domain TDGL
model are shown in green, and the analytic solution is shown as a
blue solid line. Bottom: The difference between a two-domain TDGL
model and the analytic solution is shown in green and the difference
between the single-domain TDGL model and the analytic solution is
shown in red. The biggest difference is observed at the surface.

To test the reproducibility of the result, the simulation was
later repeated, but this time the external magnetic field was
increased linearly in time from zero to 0.01Bc2 between time
zero and 500τ0. After this, the simulation was again iterated
for t = 1000τ0 time steps. The results of these two simulations
were identical.

Equations (24) and (25) were enforced on the spherical
superconductor-vacuum boundary (r = 5λ0) in both cases.
When the two-domain method was used, the TDGL
equations were solved in the inner sphere (r < 5λ0) and
only Maxwell’s equations were solved in the vacuum
domain (5λ0 < r < 20λ0). Equation (26) was enforced at
the outer boundary of the simulation (r = 20λ0). When the
single-domain simulation method was used, Eq. (26) was
enforced at the inner boundary of the simulation (r = 5λ0)
and the vacuum domain was not utilized.

The top plot in Fig. 3 shows the profile of the z component
of magnetic field (Bz) along a line through the center of the
sphere, in a plane perpendicular to the externally applied
magnetic field (white line in Fig. 2) calculated from the
single-domain simulation, the two-domain simulation, and the
analytic result. Inside the sphere, the magnetic field profile
calculated from the single-domain simulation and the two-
domain simulation are very similar although not identical.
The bottom plot in Fig. 3 shows the difference between the
TDGL simulation results and the analytic solution. The field
deep inside the sphere is strongly suppressed by the screening
currents. This can also be seen from the color map in Fig. 2.
The blue region inside the sphere corresponds to the fully
shielded portion of the sphere. However, there is a region
outside the sphere around the equator where the magnetic field
is enhanced (red color in Fig. 2).

At the surface of the sphere the magnetic field calculated
from the two-domain model reproduces the exact analytic
solution, while the single-domain model fails to account for

the enhancement of the magnetic field on the equator of the
sphere. This disparity between the single-domain model and
analytic solution is caused by the treatment of the boundary
conditions. In the single-domain model, Eq. (26) is enforced
at the superconductor-vacuum interface, which completely
ignores the effect of screening currents. Thus a two-domain
model should be used for any problem where screening and
the magnetic field profile at the surface of the superconductor
are important.

C. Point magnetic dipole above a semi-infinite superconductor

To ensure that we can accurately simulate the screening
currents produced by a spatially nonuniform magnetic field,
we numerically simulated the case of a static point magnetic
dipole placed at a height of hDP = 1λ0 above the surface of
a semi-infinite superconductor. The superconducting domain
and vacuum domain are simulated inside two coaxial cylin-
ders with equal radius R = 8λ0 with a common axis along
the ẑ direction of the Cartesian coordinate system. The origin
of this coordinate system is located on the superconductor
surface immediately below the dipole. The thickness of the
superconducting domain is hSC = 10λ0 and the height of
the vacuum domain is hvac = 5λ0. The normalized friction
coefficient η and the GL parameter κ are set to 1.

The surface magnetic fields produced by the dipole are
assumed to be below the lower critical field Hc1, so that the
superconductor remains in the Meissner state. The simulation
was started with a superconductor in the uniform Meissner
state and the dipole field equal to zero. Then, at time t = 0,
the dipole magnetic field is turned on, and the simulation
is iterated in time until the relative tolerance of ∂u

u < 0.001
is achieved for all the variables in the column vector of all
unknowns u [Eq. (19)]. At this point the static solution to the
problem is obtained. Later the simulation was repeated with
the external magnetic field linearly increasing with time over
a t = 0–500τ0 time interval before reaching a set constant
value. The results of these two simulations were identical.

We compared our TDGL results for the distribution of the
surface screening current density �Jscreening(x, y) to numerical
results obtained by Mel’nikov [74] for the case of a per-
pendicular magnetic dipole. Figure 4 shows a comparison of
the calculated screening current profiles. Both results show
that there is a circulating screening current centered directly
below the dipole. Also note that the screening current reaches
zero at the outer boundary of the simulation. This indicates
that a sufficiently large domain was chosen for simulation
and no finite size effects are expected. We have very good
agreement between the two-domain TDGL simulation result
and numerical results obtained by Mel’nikov, in the low
magnetic field limit where there are no vortices (Fig. 4).
This and the previous result serve to validate our two-domain
approach to properly capturing the screening response of the
superconductor in TDGL.

V. APPLICATION: NONLINEAR NEAR-FIELD MAGNETIC
MICROWAVE MICROSCOPY OF A SUPERCONDUCTOR

The dominant material used in SRF cavities is Nb, which
is a type-II superconductor and can host vortices. Vortices
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FIG. 4. The magnitude of the superconducting screening current
density at the surface Jscreening as a result of a perpendicular magnetic
dipole placed hDP = 1λ0 above the superconductor vs the horizontal
distance from the dipole location obtained from TDGL simulation
(blue ×) and numerical solution for the same scenario obtained from
Ref. [74] (red solid line). The left inset shows a schematic of the
dipole over the superconductor, while the right inset shows the top
view of the surface current distribution calculated by TDGL, which
is azimuthally symmetric. The parameters of the simulation are listed
in Table I.

can be created by high rf magnetic fields used in SRF cavity
operation and pointlike surface defects [7,8]. Vortices can also
form due to flux trapped during the cool down procedure.
Recent studies showed that the trapped magnetic flux amount
depends on the rate at which the cavity is cooled down through
the critical temperature and the level of the ambient magnetic
field [75]. Decreasing the trapped magnetic flux amount leads
to better cavity performance.

The type of vortices inside an SRF cavity and the dynamics
of those vortices were theoretically studied by Gurevich and
Ciovati [9]. For large parallel surface rf magnetic fields
and a pointlike surface defect, a vortex first enters the
superconductor as a vortex semiloop. To study the dynamics
of these vortex semiloops a near-field magnetic microwave
microscope was successfully built using a magnetic writer
from a conventional magnetic recording hard-disk drive
[10–16]. A magnetic write head can produce a Brf ≈ 600-mT
rf magnetic field localized to a ≈100-nm length scale [76].
In the experiment, a Seagate perpendicular magnetic writer
head is attached to a cryogenic XYZ positioner and used in
a scanning probe fashion. Probe characterization results and
other details can be found in [12–16]. The probe produces
an rf magnetic field perpendicular to the sample surface. The
sample is in the superconducting state, so to maintain the
Meissner state a screening current is induced on the surface.
This current generates a response magnetic field which
is coupled back to the same probe, creates a propagating
signal on the attached transmission line structure, and is
measured with a spectrum analyzer at room temperature.
Since superconductors are intrinsically nonlinear [77], both
linear and nonlinear responses to an applied rf magnetic field
are expected. In said experiment, mainly the third-harmonic
response to the inhomogeneous driving field is measured.

FIG. 5. TDGL simulation setup for an oscillating horizontal
magnetic dipole �MDP at height hDP above the superconductor surface.
The magnetic probe is approximated as an oscillating point magnetic
dipole parallel to the surface. Red arrows: Surface currents on
the horizontal (xy) superconductor/vacuum interface as calculated
from the self-consistent TDGL equations. Black arrows: Externally
applied magnetic field on a vertical plane (xz) perpendicular to the
superconductor surface and including the dipole.

The rf magnetic field produced by the magnetic writer
probe sitting on top of a sample is very similar to the magnetic
field produced by a horizontal point magnetic dipole with nor-
malized magnetic moment MDP(t )||x̂ placed at a height hDP

above the sample. The normalized vector potential produced
by such a dipole in free space is given by [78]

�ADP(x, y, z, t ) = MDP(t )

[x2 + y2 + (z − hDP)2]3/2

× [−(z − hDP)ŷ + yẑ], (27)

where the origin of the coordinate system is on the su-
perconductor surface immediately below the dipole. While
this is very different from a uniform and parallel magnetic
field inside an actual SRF cavity, the dynamics of the vortex
semiloops created by this field should be very similar.

The superconducting domain and vacuum domain are sim-
ulated inside two coaxial cylinders with equal radius R (see
Fig. 5) with a common axis along the ẑ direction of the Carte-
sian coordinate system. The thickness of the superconducting
domain is hSC and the height of the vacuum domain is hvac in
normalized units.

The boundary condition Eq. (26) is enforced at the top of
the vacuum domain, whereas a �B = 0 boundary condition is
enforced at the bottom and the sides of the superconducting
domain, since it is expected that the superconducting currents
due to the Meissner state will fully shield the externally
applied magnetic field before it reaches the outer boundary
of the superconductor.

The interaction between the probe and the sample was
modeled by solving the TDGL equations. In the simulation,
we specify MDP(t ) indirectly through the the magnetic field
experienced at the origin (on the superconductor surface
immediately below the dipole) �B0(t ) = �∇ × �ADP(0, 0, 0, t ) =
−MDP(t )

h3
DP

x̂, where MDP(t ) = MDP(0)sin(ωt ). The driving rf
magnetic field profile is specified through the analytic equa-
tion for the magnetic vector potential of a point dipole
[Eq. (27)], therefore the dipole itself can be placed either
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inside the vacuum domain hvac > hDP or beyond it hvac < hDP

without affecting the accuracy of the simulation. hvac is chosen
to be large enough to be consistent with Eq. (26) at the top of
the vacuum domain.

The main objective of this paper is to simulate the re-
sponse of the SRF grade Nb, thus the parameters are chosen
accordingly. For Nb, σn ranges from 2 × 108 to 2 × 109 S/m
depending on the residual resistivity ratio (RRR) value of
the material, and λ0 = 40 nm [79,80]. The characteristic time
for the relaxation of �A is τ0 = μ0λ

2
0σn = 4 × 10−12 s for Nb

bulk samples in the clean limit (RRR ≈ 300). Consequently,
the 100–2000τ0 range for the period of the magnetic dipole
corresponds to a frequency range of 125 MHz to 2.5 GHz.
Hence, the period of the dipole rf magnetic field was chosen
to be 2π

ω
= 200τ0. The GL parameter κ = 1 [5], and η is

on the order of unity (parameters are summarized in Table
I ). It should be noted that the relaxation time τ0 ∼ ps with
η = τψ

τ0
∼ 1 is “fast” in the sense that the order parameter will

quickly follow any variations in rf field or current.
The spatial distribution of the magnetic field at the surface

of the superconductor is set through the value for the dipole
height hDP. While the driving rf magnetic field is specified
through the analytic equation Eq. (27), the goal is to repro-
duce the actual spatial distribution produced by the magnetic
writer head at the surface of the superconductor, which was
provided by the manufacturer [76]. To produce similar spatial
distribution of the magnetic field, we set the dipole height to
the 300–500-nm range which corresponds to hDP of 8–12λ0 in
normalized units.

A. The evolution of vortex semiloops with time

We consider a dipole that oscillates sinusoidally in time
with frequency ω, and calculate the response of the super-
conductor to this external inhomogeneous and time-dependent
magnetic field. Our objective is to describe a spatially inhomo-
geneous microwave frequency stimulus of the superconduct-
ing surface. In this section a uniform superconductor domain
with no defects is considered. The simulation is started with
the order parameter having a uniform value of |�|2 = ε(T )
everywhere. At time t = 0 the externally applied magnetic
field is turned on. Then the simulation is run for several rf
cycles to reach the steady state solution.

FIG. 6. Snapshot of three vortex semiloops at time t = 73τ0

during the rf cycle of period 200τ0. In this view, one is looking
from inside the superconducting domain into the vacuum domain.
Plots of |�|2 are evaluated at the superconductor surface for an
oscillating parallel magnetic dipole above the superconductor. The
three-dimensional silver surfaces (corresponding to |�|2 = 0.005)
show the emergence of vortex semiloops. The simulation parameters
are given in Table I.

Figure 6 shows the results for such a simulation, and the
parameters are given in Table I. The simulation was run for
three driving periods to stabilize and the results shown in
Fig. 6 are from the fourth driving period. Three well-defined
vortex semiloops are illustrated by the three-dimensional sil-
ver surface corresponding to |�|2 = 0.005.

Figure 7 shows results for a similar simulation, illustrating
the order parameter space and time dependence, and the pa-
rameters are given in Table I. The simulation was run for five
driving periods to stabilize, and the results shown in Fig. 7 are
from the sixth driving period. We see that as �B0(t ) increases
a suppressed |�|2 domain (red region) forms at the super-
conductor surface immediately below the dipole. At t = 50τ0

the magnetic field reaches its peak value and the suppressed
superconducting region reaches its deepest point inside the
superconducting domain illustrated by the silver surface in
Fig. 7(c). Later (t > 50τ0), the amplitude of the external
driving magnetic field decreases, the suppressed |�|2 do-
main rapidly diminishes, and vortex semiloops spontaneously
emerge, become well defined [Figs. 7(d) and 7(e)], then move
back towards the surface and vanish there before the end of the

TABLE I. Values of parameters used for TDGL simulations of the oscillating magnetic dipole above the superconductor.

Parameter name Symbol Scale Fig. 4 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Temperature T Tc 0 0 0.6 0.9 0.6 0.85 0.7
Applied rf field amplitude B0 Bc2 0.01 0.75 0.55 0.3 0.46–0.84 0.3 0.3

μ0HSH
† 0.009 0.69 0.49 0.268 0.41–0.75 0.268 0.268

Period of applied rf field 2π

ω
τ0 Static 200 200 200 200 200 1000

Dipole height hDP λ0 1 8 8 12 8 12
Radius of the simulation domain R λ0 8 12 35 60 20 40 80 × 60
Height of the superconducting domain μ0hSC λ0 10 6 20 50 8 25 20
Height of the vacuum domain hvac λ0 5 3 20 25 4 15 10
Ginzburg-Landau parameter κ 1 1 1 1 1 1 1
Ratio of characteristic time scales η 1 1.675 1 0.2 1 0.5 1

†The static superheating field is calculated using the asymptotic formulas of Ref. [83]. Here we use μoHSH = 0.9Bc2.
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FIG. 7. Summary of the TDGL solution for an oscillating par-
allel magnetic dipole above a superconducting surface. (a)–(f) Plots
of |�|2 evaluated at the superconductor surface at different times for
an oscillating parallel magnetic dipole above the superconductor. In
the top part of each panel, one is looking from inside the supercon-
ducting domain into the vacuum domain, whereas in the bottom part
of each panel one is looking at the x-z cross-section plane towards
the +y axis. �MDP(t ) is chosen such that �B0(t ) = 0.55sin(ωt )x̂. The
three-dimensional silver surfaces (corresponding to |�|2 = 0.005)
show the emergence of vortex semiloops. (g) | �B0| at the surface vs
time during the first half of the rf cycle. Red crosses correspond to
field values for snapshots (a)–(f).

first half of the rf cycle. In the second part of the rf cycle, the
same process is repeated but now antivortex semiloops enter
the superconducting domain. The full solution animated over
time is available in the Supplemental Material [81]. In this
particular scenario vortices and antivortices never meet, unlike
the situation discussed in Ref. [82].

Figure 8 shows another simulation result with a different
set of parameters (listed in Table I). Here the dipole is
further away from the surface, at hDP = 12 and the temper-
ature is set to T = 0.9Tc. Three-dimensional silver contour
surfaces correspond to |�|2 = 0.005. The two-dimensional
screening currents (white arrows) and two-dimensional order
parameter (colors) are plotted in the yz plane. Three vortex
semiloops are clearly visible in this x = 0 cross-section cut.
We see that the vortex semiloops penetrated somewhat deeper
into the superconductor than the suppressed order parameter
domain.

B. The evolution of vortex semiloops with rf field amplitude

One can also study the effect of the applied rf field ampli-
tude, defined through | �B0|, on the number and the dynamics of
vortex semiloops. Figure 9 shows the bottom view of the order
parameter on the surface of the superconducting domain for
different values of the applied rf magnetic field amplitude, all

FIG. 8. Plots of |�|2 (color) and �Jsurf (arrows) evaluated at the
two-dimensional x = 0 plane inside the superconductor at t = 50τ0

for an oscillating parallel magnetic dipole above the superconductor.
White arrows indicate the currents induced inside the superconduct-
ing domain. The three-dimensional silver surfaces (corresponding
to |�|2 = 0.005) show the emergence of vortex semiloops and the
suppressed superconducting domain. All model parameters are listed
in Table I.

at the same point in the rf cycle [t = 50τ0 and �B0(t ) at its peak
value]. As expected, the number of vortex semiloops increases
with increasing | �B0|. Once | �B0| = 0.6 is reached, a normal
state |�|2 = 0 domain emerges at the origin, as opposed to a
suppressed |�|2 domain observed at lower rf field amplitudes.
The full solution as a function of peak applied magnetic
field amplitude is available in the Supplemental Material
[81].

C. The effect of localized defects on rf vortex semiloops

In the past GL has been used to estimate the surface su-
perheating field of superconductors [83] and TDGL was used
to study rf vortex nucleation in mesoscopic superconductors
[48]. Here we wish to examine the effect of a single pointlike
defect on rf vortex nucleation in a bul sample.

FIG. 9. (a)–(h) Plots of |�|2 evaluated at the superconductor
surface at t = 50τ0 for an oscillating parallel magnetic dipole above
the superconductor as a function of dipole strength. In this view,
one is looking from inside the superconducting domain into the
vacuum domain. The maximum amplitude of the applied rf field is
shown as | �B0|. The silver three-dimensional surfaces correspond to
|�|2 = 0.005 and show the suppressed order-parameter domain and
the vortex semiloops. The parameters of the simulation are listed in
Table I.
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FIG. 10. Summary of TDGL solutions for an oscillating parallel
magnetic dipole above a superconducting surface in the presence of a
localized defect at �rd = 0x̂ + yd ŷ − 12ẑ, where yd is varied from zero
to 16λ0. (a)–(e) Plots of vortex semiloops in the y-z cross-section
plane below the dipole illustrated with a three-dimensional silver
surface (corresponding to |�|2 = 0.003) at time t = 150τ0, when
the applied magnetic field reaches its peak amplitude. (f)–(j) Plots
of vortex semiloops at time t = 180τ0. The defect is denoted by
the red dot to the right of the center. �MDP(t ) is chosen such that
�B0(t ) = 0.30sin(ωt )x̂. The full list of simulation parameters is given

in Table I.

The effect of a localized defect can be specified through
the function ε(�r, T ) = α(�r,T )

α(T =0) in Eqs. (11) and (23), which can
range from ε(�r, T ) = 0 (strong suppression of superconduc-
tivity) to ε(�r, T ) = 1 (fully superconducting). Here, α(�r, T )
dictates the maximum possible value for the superfluid den-
sity ns(�r, T ) in the absence of an external magnetic field.
A simple defect can be created, for example, by defining a
Gaussian-in-space domain with suppressed superconducting
critical temperature Tcd, where 0 < Tcd < 1:

ε(�r, T ) = 1 − T

1 − (1 − Tcd )e− (x−xd )2

2σx
− (y−yd )2

2σy
− (z−zd )2

2σz

, (28)

where (xd , yd , zd ) are the central coordinates of the defect
and σx, σy, and σz are the standard deviations in the three
coordinate directions, all expressed in normalized values.
Figure 10 shows a simulation which was done with parameters
given in Table I. A localized defect with σx = σy = σz = √

2

and Tcd = 0.2 is located at �rd = 0x̂ + yd ŷ − 12ẑ, where yd

is varied from zero to 16λ0, to represent a localized defect
that is centered 12 penetration depths (λ0) below the surface
and offset various distances from the oscillating dipole. We
observed very similar vortex semiloops in the time domain
evolution as those shown above. However, one of the vortex
semiloops is now attracted towards the defect location (shown
as a red dot in Fig. 10) and is distorted in shape. Furthermore,
the vortex attracted by the defect remains inside the supercon-
ductor longer compared to the other vortex semiloops. Note
that the semiloop disappears at the end of each half of the rf
cycle, hence the pinning potential of this defect is not strong
enough to trap the vortex semiloop, only to modify the rf
behavior.

D. Surface Defect in a Parallel rf magnetic field

In previous sections, we examined the dynamics of vortex
semiloops created by a point magnetic dipole, as it is relevant
to the magnetic microscopy experiment [16]. In this section
we will briefly address the more general case which is ap-
propriate for SRF applications, a uniform parallel rf magnetic
field [ �B(t ) = B0sin(ωt )x̂] above the superconductor in the
presence of a single defect on the surface. In order to have a
truly uniform field, the boundary between superconductor and
vacuum should be simulated as an infinite plane. To accurately
simulate the screening currents on the surface of the cavity, the
two-domain simulation method described in Sec. IV A is used.
The superconducting domain and vacuum domain are simu-
lated inside two rectangular blocks instead of the cylindrical
domain used in previous sections. The block dimensions are
L = 80λ0 (along the field direction) and width W = 60λ0.
The height of the superconducting domain is hSC = 20λ0,
and the height of the vacuum domain is hvac = 10λ0. The
vacuum domain is placed on the top of the superconducting
domain. To mimic the infinite domain, periodic boundary
conditions are applied in the ±x̂ and ±ŷ directions both for
� and �A.

Figure 11 shows the solution for the order parameter in
the case of an externally applied rf magnetic field parallel to
the surface of the superconductor along the x̂ axis direction. A
localized defect [modeled with Eq. (28)] is placed at the origin
(�rd = 0x̂ + 0ŷ + 0ẑ) with σx = 6 and σy = σz = 1 and Tcd =
0.1. A transient solution starting from the zero field Meissner
state is studied in this case. A vortex semiloop penetrates
into the superconducting domain at the site of the defect
as the rf field amplitude increases [84]. We consider vortex
semiloops as a unique type of vortex, distinctly different
from parallel line vortices [85]. When the amplitude of the
magnetic field is increased beyond that used in Fig. 11, we
observe that arrays of parallel line vortices nucleate into the
superconductor. While no defect was required to create vortex
semiloops with the magnetic dipole source, a surface defect
is required to create such a vortex when a parallel field is
applied.

The solution shown in Fig. 11 is an initial transient solu-
tion, i.e., the simulation is not run for several cycles to reach
the steady state condition. When the vortex semiloop reaches
the boundary of the simulation in the field direction the results
become nonphysical due to artificial pinning of the vortex
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FIG. 11. (a)–(h) Plots of vortex semiloops illustrated with a
silver surface (corresponding to |�|2 = 0.005) at different times for a
parallel rf magnetic field in the x̂ direction above the superconductor.
A localized defect is placed at the origin (�rd = 0x̂ + 0ŷ + 0ẑ) with
σx = 6 and σy = σz = 1 and Tcd = 0.1. The color shows the order-
parameter magnitude |�|2 on the superconducting surface. (i) | �B0| at
the surface vs time during the first half of the rf cycle. Red crosses
correspond to field values for snapshots (a)–(h). The full list of
simulation parameters is given in Table I. Note that this is a transient
solution rather than a steady-state solution.

semiloop by the boundaries. This finite size effect is currently
limiting our ability to perform full rf parallel field simulation.
Nevertheless, the transient solution shown in Fig. 11 may give
some insight into the development of vortex semiloops in SRF
cavities [9], and will be pursued in future work.

VI. DISCUSSION

These simulations have proven very useful in understand-
ing the measured third-harmonic response of Nb materials,
subjected to intense localized rf magnetic fields [16]. In all the
cases described in the previous section, the order parameter
|�|2 and the vector potential �A are first retrieved from the
simulation. Using Eq. (13) the screening supercurrent is calcu-
lated for each point in space and time. The response magnetic
field generated by said currents at the location of the dipole
is calculated using the Biot-Savart law. The third-harmonic
response recovered at the location of the dipole is obtained
through Fourier transformation of the calculated response
magnetic field. Later the TDGL-derived third-harmonic volt-
age V3ω was compared with the third-harmonic response mea-

sured from experiment. The comparison is discussed in detail
in Ref. [16].

While most of the work was done for an oscillating parallel
magnetic dipole, we also showed that vortex semiloops are
created when a localized defect is introduced in the internal
surface of an SRF cavity. It is plausible that vortex semiloops
are one of the key sources of dissipation inside an SRF
cavity at high operating power. The losses associated with
such a vortex can be studied by combining the TDGL nu-
merical technique with the experimental work published in
Ref. [16].

While recent advances in SRF cavity fabrication, espe-
cially the technique of nitrogen doping and nitrogen infusion
[86–88], have significantly improved the properties of SRF
cavities, the microscopic mechanism responsible for this im-
provement is yet unknown. Nitrogen infused cavity surfaces
can perhaps be thought of as a layered superconductor, with
a dirty superconductor on top acting like a “slow” super-
conductor and suppressing vortex nucleation [79,89,90]. The
characteristic time scale governing the dynamic behavior of
the superconductor was calculated by Gor’kov and Eliashberg
to be τGL = π h̄

8kB (Tc−T ) [34]. Superconductors in the dirty limit,
with a finite inelastic electron-phonon scattering time τE

subject to
√

DτE � ξ , can be better studied using gTDGL,
where the effect of a finite inelastic electron scattering time
is considered [42]. However, Tinkham has argued that the
characteristic time for the relaxation of the order parameter in
a gapped superconductor in the clean limit should be much
longer than the characteristic GL time τGL, instead on the
order of τE [21,27,91] (τE ≈ 1.5 × 10−10 s for Nb [92]). It has
been argued that a TDGL-like equation that incorporates these
long relaxation times, a so called slow-GL model, can be used
in such circumstances [21]. Perhaps the effects of nitrogen
doping and nitrogen infusion on Nb cavities can be better
understood by considering the effects of this different time
scale on vortex semiloop formation. This can be accomplished
with a sequence of TDGL, gTDGL, and slow-GL model
simulations.

There is also a proposal to create superconductor-insulator
multilayer thin-film coatings with enhanced rf critical fields
[93]. TDGL simulations can be used to guide the design
process for these multilayers. Although TDGL is not a mi-
croscopic theory, and it is sometimes difficult to link the
parameters of the model to observable experimental quan-
tities, the general behavior of the superconductor response
to microwave magnetic fields and the development of vortex
semiloops still provide much insight.

VII. CONCLUSION

In this paper we present a way to perform TDGL simula-
tions in three dimensions for spatially nonuniform magnetic
fields applied to a superconducting surface. Proof of principle
results are presented to show the validity of the proposed two-
domain simulation method. The vortex semiloops created by
a point magnetic dipole above the surface and the rf dynamics
of such vortices are studied. The effect of temperature, rf field
amplitude, and the surface defects on the vortex semiloops
are studied and presented. The resulting third-harmonic non-
linear response can be calculated and compared with the

033306-11



BAKHROM ORIPOV AND STEVEN M. ANLAGE PHYSICAL REVIEW E 101, 033306 (2020)

experimental data (a comparison is published in Ref. [16]). Fi-
nally, we demonstrate the creation of such rf vortex semiloops
in the case of a uniform rf magnetic field parallel to a super-
conducting surface with a single defect.
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